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Abstract
We discover a new universal long-range interaction between solid objects in
polymer media. This polymer-induced interaction is directly opposite to the
van der Waals attraction. The predicted effect is deeply related to the classical
Casimir interactions, providing a unique example of universal fluctuation-
induced repulsion rather than normal attraction. This universal repulsion comes
from the subtracted soft fluctuation modes in the ideal counterpart of the real
polymer system. The effect can also be interpreted in terms of subtracted (ghost)
large-scale polymer loops. We establish the general expressions for the energy
of polymer-induced interactions for arbitrary solid particles in a concentrated
polymer system. We find that the correlation function of the polymer density
in a concentrated solution of very long chains follows a scaling law rather
than an exponential decay at large distances. These novel universal long-range
interactions can be of importance in various polymer systems. We discuss the
ways to observe/simulate these fluctuation-induced effects.

1. Introduction

Fluctuations in polymer melts are generally assumed to be both weak and short range. In fact,
the concept of totally screened long-range interactions in concentrated polymer systems is one
of the cornerstones of the modern polymer theory [1–3]. This concept is related to the well
known Flory theorem concerning polymer chain statistics in a melt [3]. For example, consider
a melt of infinitely long linear polymer chains which is locally perturbed by a colloidal particle.
How does this perturbation decay with the distance to the source? The classical theoretical
answer would be: the perturbation is short range, it decays exponentially at distances longer
than the static correlation length ξ which is of the order of the monomer size. In the present
paper we prove that this is not true. We demonstrate that the interactions are not totally
screened, that concentration perturbations in dense polymers show a power-law rather than an
exponential decay at distances larger than ξ , and that there is a long-range repulsion between
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two solid particles in a dense polymer system, and a similar interaction between parallel solid
plates [4].

These results obviously contradict the idea of no long-range interactions in polymer
melts [5, 6]. In order to clarify the issue we present and discuss below several qualitatively
different explanations of the long-range effect (all of them are backed by corresponding
quantitative treatments in sections 2–4):

(i) We employ the polymer–magnetic analogy [3] and argue that soft transverse Goldstone
modes of n-vector spin fluctuations must generate the Casimir force multiplied by the
number of these modes, n−1. Thus in the limit n → 0 corresponding to linear polymers [3]
we get an interaction which is exactly opposite to the Casimir effect, i.e. long-range
repulsion instead of attraction (see section 2).

(ii) Pursuing another approach we start with a concentrated system of non-interacting ideal
polymers, and then turn on the excluded volume interactions. There are definitely no long-
range forces in the ideal system which nevertheless shows soft modes of concentration
fluctuations. By turning on monomer interactions we suppress these soft modes (at
q → 0) and hence suppress the virtual Casimir attraction associated with these modes,
thus inducing an anti-Casimir repulsion (see sections 3, 4). We thus elucidate the peculiar
connection between the predicted long-range interactions and the fluctuation-induced
(Casimir) forces: it turns out that it is not the density fluctuations in the real polymer
system (polymer melt) that matter (they are in fact negligible), but rather it is the much
stronger fluctuations in the ideal polymer counterpart (i.e. in the reference system of non-
interacting polymer chains, before the interactions are turned on) that are relevant. That
is why an anomalous opposite effect is predicted: repulsion in contrast to the normally
attractive Casimir forces [7–10].

(iii) The third and, perhaps, the best view of the problem is to consider a living melt of bi-
functional units (where all functional groups are reacted). At any instant the living system
is a mixture of infinite polymer chains and finite cyclic polymers of all sizes. There are
no long-range effects in this living system. A linear polymer melt can be derived from the
living mixture by eliminating all finite cycles (including long-range ones). However this
very elimination procedure also brings in long-range interactions: for example, note that
cyclization is more probable in a gap between two solid plates than in the bulk. Therefore
elimination of cycles in a narrow gap results in a thermodynamically less favourable state
(higher free energy) as compared with a wide gap, and hence repulsion between the plates
(see section 4.2).

The predicted polymer-induced long-range (PILR) forces are likely to be of importance
in various physical, chemical, and technological applications. Altogether the predicted effect
is rather subtle, and as such provides an experimental challenge like that of the original Casimir
effect. The possible ways to observe/simulate the PILR interactions are discussed in the last
section.

2. The polymer–magnetic analogy

The analogy between a polymer melt and a magnetic system with zero number of spin
components is well known (see for example an excellent introduction to the subject given
by de Gennes [3]). In this section for the purpose of clarity we restrict ourselves to lattice
models of polymer melts and of the corresponding magnetic systems [3, 11–13]. Monomer
units occupy the lattice sites; only one unit per site is permitted. The monomer units on the
nearest sites are connected with the links, thus forming long chains. Most units are connected
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to two other units; a very small fraction of monomer units (chain ends) are connected only to
one nearest neighbour.

2.1. The mapping

Below we will follow the mapping of a polymer melt to a magnetic system proposed
for lattice models [11, 12]. Consider a lattice of sites {ri } with the n-component field
ϕ(ri ) = {ϕ1(ri), . . . , ϕn(ri )} defined at each site. The interaction between the sites is
controlled by constants Ki j (Ki j = 1 for each pair of neighbouring sites i j , and Ki j = 0
otherwise). The partition function of the system is [11, 12]

Z =
∫
�{i}dnϕ(ri)e−H0�{i}{ 1

2ϕ
2(ri) + hϕ1(ri ) + α}

∫
�{i}dnϕ(ri)e−H0

(1)

where

H0 = 1
2

∑

{i j}
ϕ(ri)(Ki j)

−1ϕ(r j), (2)

operator (Ki j)
−1 is inverse to Ki j , and h, α are parameters. (These parameters will be used to

control the density of end points of polymers and density of vacancies in the corresponding
polymer system.) It is assumed that the integration in equation (1) is over appropriate multi-
dimensional complex contours such that the integrals converge. This system describes a
magnetic system of n-component spins in a constant magnetic field proportional to h, and with
spin coupling constants defining the spin interactions proportional to Ki j .3

Using Wick’s theorem (or the Stratonovich–Hubbard transformation with respect to ϕ) it
is easy to prove that the partition function (1) is equal to that of a living system of self-avoiding
polymers on the lattice (each lattice site is occupied either by a monomer unit or by a vacancy):

Z =
∑

Nc,Ne,Nv

nNc hNe αNv Cconf (Nc,Ne,Nv) (3)

where Cconf(Nc,Ne,Nv) is the number of different configurations of N − Nv monomer units
forming Ne/2 linear chains and Nc cycles, N is the total number of lattice sites, Nv is the
number of vacancies, and Ne is the number of chain ends. Thus each polymer chain end
contributes with the factor h, each unoccupied site with the factor α (the bonds connecting the
nearest sites contribute with the factor Ki j = 1).

Closed loop configurations have an additional factor n through the summation over the
components of the fields ϕα(ri ). For n → 0 all closed loop configurations are eliminated.
Below we consider the regime when n = 0 and both α and h are small, which corresponds to
a concentrated solution of long linear polymers.

2.2. The mean field approximation

We can rewrite equation (1) as

Z =
∫ ∏

{i} dnϕ(ri )e−H

∫ ∏
{i} dnϕ(ri)e−H0

where H0 is defined in equation (2), and

H = H0 −
∑

i

ln
(

1
2ϕ

2(ri ) + hϕ1(ri ) + α
)
. (4)

3 Note that for n �= 0 the Hamiltonian H does not necessarily correspond to a realistic magnetic lattice spin system.
This is just as a mathematical trick for obtaining the free energy of a system of living polymers with cycles.
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The mean field approximation is equivalent to the saddle-point evaluation of both integrals in
the above expression for the partition function Z [12]: Z � e−H ∗+H ∗

0 ≡ Zmf . The saddle point
for the denominator is ϕ = 0, H ∗

0 = 0. Assuming that the saddle point for the numerator
H ∗ = H {ϕ∗} corresponds to a uniform field ϕ∗(ri ) = (ϕ∗

1 , 0 . . . 0) we get the following mean
field equation:

ϕ∗
1

(
ϕ∗2

1 /2 + hϕ∗
1 + α

) − z
(
ϕ∗

1 + h
) = 0

where z is the coordination number of the lattice. The mean field approximation is applicable
if z � 1 [12].

For the uniform system we thus get H ∗ = N [ 1
2z (ϕ

∗
1)

2 − ln( 1
2ϕ

∗2
1 + hϕ∗

1 + α)]. Since we
are interested in the properties of a melt or a concentrated solution (α � 1) of long polymers
(h � 1), we keep only the first-order terms in h and α:

ϕ∗
1

2 � 2z − 2α − h
√

2z.

The free energy per site in this approximation is: Fmf = H ∗−H ∗
0

N � 1 − α/z − 2h/
√

2z − ln z
(here and below we assume that kBT is the energy unit; however we explicitly write kBT in
some final equations). The corresponding partition function is

Zmf � (z/e)N exp
(

2hN/
√

2z
)

exp (αN/z) . (5)

This result will be improved in the next section by including the fluctuations around the saddle
point. Let us interpret Zmf in terms of the number of different configurations of polymers on
the lattice. Equation (3) implies that the average numbers of end points and vacancies can
be calculated by taking logarithmic derivatives of the partition function with respect to the
conjugate parameters: Ne = ∂ ln Z

∂ ln h � 2Nh/
√

2z, Nv = ∂ ln Z
∂ ln α � Nα/z. Thus the average

length of the polymers is N0 = 2 (N − Nv) /Ne − 1 � √
2z/h. Therefore the regime we

consider (α � 1, h � 1) indeed corresponds to long polymer chains (N0 � 1) and low
fraction of vacancies (Nv/N � 1). Note that the average number of cycles is 0 in the
mean field approximation since Zmf does not depend on n. Using equations (5) and (3) we
can estimate the number Cconf (Nc = 0,Ne,Nv) of different configurations of Ne/2 polymers
with Nv vacancies:

Cconf (Nc = 0,Ne,Nv) � Zmf

hNeαNv
�

( z

e

)N−Ne/2−Nv
(

2e

c2
e

)Ne/2 (
1

cv

)Nv

(6)

where ce = Ne/N � 2/N0 is the concentration of ends and cv = Nv/N is the concentration
of vacancies. Noting that Ne/2 is the number of polymer chains, and N − Ne/2 − Nv is
the number of polymer bonds, we conclude that the statistical weights that must be attributed
to each bond and each vacancy are z

e and 1
cv

respectively. The chain statistical weight is
2e
c2

e
� 1

2
e
cp

N0, where 1
2 is the symmetry factor, cp = ce/2 is the concentration of chains, e

cp
is

the standard ideal-gas factor, and the factor N0 (the average length of the chain) accounts for
the width of the chain length distribution.

2.3. The effect of fluctuations

In order to include the order parameter fluctuations around the mean fieldϕ∗(ri ) = (ϕ∗
1 , 0 · · · 0)

we expand the Hamiltonian, equation (4), for small deviations from this saddle point, use the
quadratic approximation, and evaluate the corresponding Gaussian integrals using the steepest
descent method. The denominator in equation (1) can be easily evaluated in the same way; it
stays equal to 1 for n = 0.
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The result of this calculation is: Z � Zmf Zfluct, where

Zfluct =
∏

k

[ f (k)]−1/2 .

Here the product is taken over the relevant spectrum of wavevectors k determined by the system
size,

f (k) � [1 + (1 − 2α/z − 1/N0) K (k)] [1 − (1 − 1/N0) K (k)](n−1) ,

K (k) = 1

z

∑

j

Ki j eik·(ri −r j) (7)

is the Fourier transform of Ki j , K (0) = 1, and 1/N0 � h/
√

2z. Equation (7) is valid in the
first approximation for h � 1, α � 1. Thus fluctuations of the order parameter produce an
additional contribution to the free energy:

Ffluct = − ln Zfluct � 1
2

∑

k

log f (k). (8)

The term in the first square brackets in equation (7) comes from the integration over
longitudinal fluctuations, ϕ1 − ϕ∗

1 , which are associated with correlation function of the total
density of monomer units. The term in the second square brackets comes from integrations over
n − 1 transverse fluctuations of the order parameter (Goldstone modes) which are associated
with end-to-end correlations of individual polymer chains. From this point on we will always
consider the case n = 0, so the number of transverse modes is equal to −1. At small h (long
polymer chains) these modes have a gap 1/N0 � h/

√
2z and the main contribution to Zfluct

comes from the terms with small k ∼ (1/N0)
1/2. In real space this corresponds to the distances

up to the typical polymer coil size ∼N1/2
0 .

We are now in a position to consider the system in the presence of two parallel impenetrable
plates. The plates affect the order parameter fluctuations, thereby changing the free energy.
An effective interaction between the plates is thus induced. We may disregard the effects
of distortion of the order parameter profile near the boundaries: this distortion decays
exponentially away from the boundary, so it cannot contribute to the interaction between
the plates separated by a distance larger than a few lattice units. It is convenient to consider the
plates oriented normal to the x1-axis: x1 = −1/2 (plate 1) and x1 = D − 1/2 (plate 2), where
D is the distance between the plates (the position vector r = (x1, x2, . . . , xd), where d is the
space dimension). We focus on the part of the system in the gap, −1/2 < x1 < D − 1/2: it is
this part that determines the interaction of plates. The partition function Z of the system with
plates is defined by the general equations (1), (2) with the same matrix Ki j except that now
Ki j = 0 for all lattice bonds (i j) crossing the plates. The last condition ensures that the plates
are impenetrable: the same Z corresponds to a system of living polymer chains that do not
cross the plates. In order to proceed we need to establish the boundary conditions for the order
parameter ϕ. For simplicity we first consider just one plate at x1 = −1/2 and the sub-system
x1 > −1/2. Let us modify slightly the spin interaction matrix: Ki j → Ki j + δi j�i , where
δi j is the Kronecker delta, �i = 1 if ri is near the plate (at the distance 1/2), and �i = 0
otherwise. This transformation for n = 0 does not affect at all either the statistics of the
corresponding polymer system or the partition function Z . Let us compare the modified half-
system and the original bulk system with no plate with the same order parameter field ϕ(ri ) for
x1 > −1/2; for the bulk system we demand in addition that the field ϕ(ri ) is symmetric with
respect to the reflection in the plane x1 = −1/2. It is easy to show that the Hamiltonian H
for the half-system (x1 > −1/2) is exactly 1/2 of the original bulk Hamiltonian of the whole
system with no plate. Hence reflective (Neumann) boundary conditions must be imposed at
the plates (i.e. ∂ϕ/∂x1 = 0 in the continuous limit). In this case the mean field (saddle point)
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ϕ∗(ri ) = {ϕ∗
1 , 0 · · · 0} is not affected by the plates (i.e. ϕ∗ remains uniform), and the mean

field free energy Fmf is not affected by the plates either. It is the spectrum of fluctuations of ϕ
that is defined by the plates. The relevant wavevectors k = (k1, k2, . . . , kd) now include the
discrete component perpendicular to the plates: k1 = πm/D, m = 0, . . . , D − 1 (the parallel
components k2, . . . , kd are continuous). Taking into account only transverse modes (i.e. order
parameter fluctuations perpendicular to the unperturbed vector ϕ∗: it is these modes that are
soft for small k) we get

Ffluct � A
+∞∑

m=−∞
	(m) (9)

where 	(m) = − 1
2

∫
d2k
(2π)2 ln(k2 + m2π2/D2 + 2d/N0), A is the plate area. Note that

equation (9) implies that Ffluct is independent of α.
In order to obtain only the distance dependent contribution to Ffluct we can subtract from

Ffluct the contribution of fluctuations in the bulk, where the summation over k1 is replaced by
integration. This regularization of the sum in equation (9) (subtraction of the contribution of
fluctuations in the bulk melt) is similar to the procedure used in the calculation of the Casimir
effect for a scalar field with mass [14, 15]. For technical reasons it is convenient to calculate
directly the force f = − 1

A
∂Ffluct
∂D between the plates. The final result for d = 3 is

f � kBT

16πD3

∫ ∞

2D/Rg

x2 dx

ex − 1
(10)

where Rg � √
N0/6 is the polymer coil gyration radius. For D � Rg we get the standard

expression for the Casimir force with massless scalar field [14]:

f = kBT ζ (3) /
(
8πD3

)
, (11)

however, with the opposite sign because of the negative number (−1) of soft components. In
other words the predicted long-range repulsion is due to the negative number of soft Goldstone
modes. For D � Rg we get an exponential decay:

f � kBT

16πD3

(
2D/Rg

)2
e−2D/Rg .

The cases of cubic and body centred cubic lattices with no vacancies,α → 0, are somewhat
special if only the nearest neighbour interactions are involved. In these cases the inverse
longitudinal propagator is zero at k = (π, . . . , π) [12], leading to an oscillatory correlation
function of vacancies showing a tendency towards antiferromagnetic ordering. Formally, in
the limit of an extremely dense melt α → 0 the contribution of the longitudinal mode cancels
the effect of −1 transverse modes. This cancellation effect exists only for simple cubic and
bcc lattices and only with minimal number of nearest neighbours. It is easy to check that for
any other generic lattice the longitudinal fluctuations are unimportant. On these two special
lattices the obligatory condition for this cancellation is that the number of vacancies is much
less than the number of polymer chains. Basically this means that the dense packing problem
for a polymer chain (Hamiltonian path problem) on these two lattices is different from the
generic dense packing problem, because of specific symmetry constraints. We will address
this issue in a future publication4.

4 Moreover, even for the special cubic lattices the soft longitudinal mode is likely to be a mean field effect valid in
the random phase approximation (RPA). A due account of the higher order fluctuation corrections would renormalize
the gap for the longitudinal mode and would then reinstall the long-range interaction even for the special lattices (note
that the minimal number of nearest neighbours corresponds to the strongest fluctuations, i.e. to significant corrections
to the RPA results). It is therefore likely that the ‘antiferromagnetic’ oscillations represent a short-range effect even
for the special cubic lattices, and even in the limit α → 0.



Fluctuation-induced long-range interactions in polymer systems S1753

3. The real-space analysis of the long-range fluctuation effects

In this section we consider the long-range effects using an alternative purely ‘polymeric’
theoretical approach. The analysis directly involves the free energy as a functional of the
real-space distribution of polymer conformations.

3.1. Correlation function of polymer density fluctuations

Let us discuss the fluctuation effects for the equilibrium correlation function of density
fluctuations in a polymer melt (or in a concentrated solution). The correlation function

G(r) = 〈δc(r)δc(0)〉
is related to the scattering function (the structure factor)

S(q) = 1

V
〈cqc−q〉 =

∫
G(r)eir·qddr

where δc(r) = c(r)− c0, c(r) is the local concentration of monomer units, c0 is its average
value, cq = ∫

c(r)e−iq·r ddr is its Fourier transform, V is the total volume, and d is the space
dimension. The equilibrium probability of a fluctuation δc(r) is proportional to e−H [c(r)],
where H [c] is the effective Hamiltonian (mesoscopic free energy) of the system [16]5. Once
H [c] is known, both S(q) and G(r) can be calculated using a standard technique, e.g. by
expanding H [c] as a series in δc (a melt is a weakly fluctuating system, so δc is typically
small, δc � c0). For example,

S(q) = 1

V

∫
cqc−qe−H [c] D[c]

/∫
e−H [c]D[c], q �= 0. (12)

The Hamiltonian can be written as

H [c] � Hid [c] + Hint [c]

where Hid corresponds to the reference system of ideal polymer chains (with the same chemical
bonds, but no excluded volume interactions), and Hint is essentially the free energy of monomer
interactions. The well known mean field result for a dense system of non-interacting (ideal)
infinitely long polymer chains reads [17, 19, 3]

H (0)
id [c] = a2

4

∫
(∇c)2

c
ddr (13)

where a2 = b2/(2d), b, the chain statistical length. This equation is valid for both weak and
strong inhomogeneities (i.e. in the general case δc ∼ c0) provided that the relevant length scale
is larger than�. As for the interaction energy Hint, we may expand it as a series in δc = c − c0

and keep only the dominant quadratic term assuming that δc � c0:

Hint � 1
2

∫
v (c − c0)

2 ddr . (14)

The irrelevant constant and linear terms are omitted here. The interaction parameter v is related
to the bulk compression modulus of the system (osmotic modulus in the case of solution):

v = 1

c0

∂�

∂c0
(15)

5 Note that the effective Hamiltonian is a functional of the coarse-grained (rather than microscopic) concentration
distribution c(r), with some coarsening scale �, c0�

d � 1.
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where� is the pressure (osmotic pressure). Thus in the general case v is not just the excluded
volume of a monomer unit6. Adopting the quadratic approximation also for H (0)

id , i.e. expanding
it in δc and truncating the expansion, and using equations (12), (13), (14), we get the classical
result S(q) � 1

v
1

1+q2ξ 2 , where ξ � a/
√

2vc0 is the mean field static correlation length. It is

also easy to show that higher order terms in either H (0)
id or Hint result in negligible corrections

to the structure factor (provided that the fluctuation parameter Gi ≡ vd−2

c4−d
0 b2d � 1, i.e. in the

mean field regime)7. So what is the point?
The central point is that the very basic expression for H (0)

id , equation (13), must be modified,
because the effective Hamiltonian H (0)

id is not exact even for the ideal polymer system! To see
this we calculate S0(q), the structure factor of the ideal system using equation (13). The result
for d = 3 is (it can be easily obtained by using the substitution c = c0ψ

2)8

S(0)(q) � 2c0

q2a2

{

1 + const
q

c0a2

}

where the last term in curly brackets is a correction due to higher order terms in the δc-
expansion of H (0)

id . Yet the structure factor of the ideal long Gaussian chains is known to be
exactly Sid(q) = 2c0

q2a2 . Hence there is a correction to H (0)
id :

Hid = H (0)
id + Hnloc. (16)

Demanding that Hid generates the correct structure factor (and higher order correlation
functions characterizing the ideal system) we get

Hnloc = 1

2


d

c2
0

∫
qdδcqδc−q

ddq

(2π)d
+ O

(
δc

c0

)3

where 
d = 2−2dπ
3−d

2
1

cos
(
π(3−d)

2

)
�( d−1

2 )
. Note that Hnloc is essentially non-local, and it can be

represented as

Hnloc � Cd

2c2
0

∫
δc(r)δc(r′)

1

|r − r′|2d
ddr ddr ′ (17)

where Cd =
√
π

(2π)d
�(d)�(1+d/2)
�(d/2−1/2) . It is this fluctuation-induced non-local term Hnloc that is the

source of all long-range effects in dense systems of interacting polymers.
With H � H (0)

id + Hnloc + Hint as defined by the above equations we get9

S(q) �
(

v +
q2a2

2c0
+ 
d

qd

c2
0

)−1

, qξ � 1. (18)

The last term in brackets, ∼qd , is due to the fluctuation-induced Hamiltonian Hnloc.10 The
qd term is not dominant, yet it is very important at low q since with this term S(q) becomes
non-analytical (weakly singular) at q = 0. This weak singularity generates a long-range
power-law tail in the correlation function for r � ξ :

G(r) =
∫

S(q)eiq·r ddq

(2π)d
� Gmf (r)− Cd

v2c2
0

1

r2d
(19)

6 In the general case a length scale dependence of vmust be taken into account, i.e. the integrand in equation (14) must
be replaced by the form v(r, r′)δc(r)δc(r′). However normally the direct monomer (excluded volume) interactions
are short range, so the dispersion can be neglected if we set the cut-off� to be longer than the interaction length scale.
7 The corrections to the mean field S(q) do not bring in any long-range effect even in the general case Gi ∼ 1 when
these corrections are non-negligible.
8 We neglect the inessential terms that tend to 0 as the cut-off � is increased.
9 Here we neglect trivial corrections like a renormalization of the parameter a.
10 A similar q3 term for the intra-chain structure factor for d = 3 was derived in [24].
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where Gmf (r) is the mean field result. For d = 3 we get

G(r) � c0

2πra2
e−r/ξ − 3

16π2

1

v2c2
0

1

r6
for r � ξ. (20)

Note that G(r) is non-monotonic: it becomes negative for r larger than a few ξs (i.e., anti-
correlation at large distances). Note also that equations (19), (20) are valid for almost any r
in the case of sufficiently long chains. These equations are asymptotically correct for r � ξ

because the basic equation (18) is valid in the corresponding low q regime as long as the relevant
fluctuation parameter (the Ginzburg parameter) is small [2, 17–19]: Gi ≡ vd−2

c4−d
0 b2d � 1. On

the other hand, the above equations for G(r) are also asymptotically valid for r ∼ ξ because
the mean field term, Gmf , is dominant in this region (if Gi � 1). In addition, the first term in
equation (20) assumes Gaussian statistics which is valid for r � b. Equation (20) is also valid
for polymer chains of finite length if r is smaller than the coil size Rg � bN1/2/

√
2d, i.e. this

equation is applicable in the range b � r � Rg.
In practice the fluctuation parameter is often not small. This is true, for example, for

lattice (Flory) models of flexible polymers, or at low enough concentrations. (In semidilute
solutions Gi = vd−2

c4−d
0 b2d can formally be �1; this marks the scaling regime of swollen blobs. In

this regime we can consider concentration blobs as renormalized monomers thus bringing the
fluctuation parameter back to Gi ∼ 1.) Therefore it is important to work out whether the above
results are applicable when fluctuations are not weak, i.e. in the regime Gi ∼ 1. This is a more
subtle issue. The higher order fluctuation corrections could considerably affect the first term
in equation (20). However, this term is exponentially small for r � ξ , so only the second non-
local term survives in this regime. Do fluctuations renormalize this term? To find this out we
consider a coarse-grained model with large enough coarsening scale�� ξ . Then the effective
Hamiltonian H [c] is considered as a functional of the smoothed concentration distribution c(r)
which can be defined, for example, by specifying the number of monomers in each cell of size
�. Turning to the ideal (non-interacting) system we identify the relevant fluctuation parameter
as ( δcc0

)2 ∼ 1
c0b2�

, where the fluctuation δc is averaged over a cell (for d = 3). The parameter
1

c0b2�
is small if� � ξ and Gi ∼ 1; therefore fluctuations of the coarse-grained c(r) are weak

even for the ideal system (and of course they become even weaker when the monomer excluded
volume interactions are turned on). In other words we consider renormalized monomers of
size much larger than ξ . These monomers strongly overlap. Therefore the fluctuation effects
are weak; i.e. the effective renormalized fluctuation parameter is small for length scales larger
than ξ . It is in the regime of weak fluctuations that the mean field result for Hid, equation (13),
is asymptotically exact [17], and the same conclusion applies to the non-local correction
Hnloc. In fact, a renormalization of the cell size obviously does not affect the non-local term
provided that δc � c0; therefore equation (17) is asymptotically exact for � � 1

c0b2 when
the typical fluctuations are indeed small (δc � c0). When the excluded volume monomer
interactions are turned on, the effective Hamiltonian must be modified. In the case � � ξ ,
Gi ∼ 1 this modification is not as simple as adding the interaction term, equation (14). The
interactions can affect the polymer chain conformations at the sub-cell length scale<�; hence,
for example, the statistical segment must be renormalized: b → b∗ [26]. The square-gradient
term, equation (13), is also affected by the interactions; in particular, the coefficient a2 is
renormalized: a2 → β̃. Note however that the two renormalizations are essentially different:
in the general case β̃/a2 is not equal to (b∗/b)2! Normally b∗ > b, meaning that a sufficiently
long chain fragment is somewhat swollen relative to its unperturbed Gaussian size [26]. On
the other hand, β̃ can become smaller than a2; moreover, the square-gradient term may even
become negative, i.e. β̃ < 0 (this was shown for d = 2 [20], but can possibly be the case also
for d = 3). Since monomer interactions are local, they do not affect the general structure of the
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non-local Hamiltonian; however they can renormalize its amplitude giving rise to an additional
prefactor κ∗ in equation (17). This prefactor accounts for the effect of higher order fluctuation
corrections (beyond the one-loop approximation). The factor κ∗ is calculated in section 4.2.

Thus the effective Hamiltonian for � � ξ , Gi ∼ 1 is H [c] = H (0) + Hnloc:

H [c] �
∫ [

β̃

4c0
(∇c)2 +

v

2
(δc)2

]

ddr +
κ∗Cd

2c2
0

∫
δc(r)δc(r′)

1

|r − r′|2d
ddr ddr ′ (21)

where δc = c(r)− c0, δc � c0. The case δc ∼ c0 in considered in section 4.
The correlation function G(r) for r � ξ can be obtained from equation (21) using its

general relation to the corresponding susceptibility [16]. The result is (compare with the
second term in equation (19)):

G(r) � −κ
∗Cd

v2c2
0

1

r2d
, r � ξ (22)

where v is defined in equation (15). This result is valid in the general case, Gi ∼ 1. For
simplicity below (and until section 4.2) we assume that fluctuations are weak, Gi � 1, so that
κ∗ � 1, i.e. the interactions of monomer units nearly do not affect the non-local Hamiltonian.
The interaction energy is then simply additive: H = H (0) + Hnloc, H (0) � H (0)

id + Hint.
The correlation function also defines the response of the system to a weak perturbation

induced, for example, by two probe monomers: their interaction potential is [2] v∗(r) �
−v2G(r). Using equation (20) we find

v∗(r) � 3

16π2

kBT

c2
0

1

r6
for r � ξ. (23)

Note that this power law (1/r6) already emerged in the non-local Hamiltonian, equation (17).
Thus monomer interactions are not completely screened at r � ξ : effective long-range
repulsion between the monomers is predicted (as opposed to the classical mean field attraction
at r � ξ ). The interaction of two oligomeric chains, each of g monomers, is g2 times stronger
(provided that the distance r between the chains is larger than their size). A similar repulsion
is predicted for any particles immersed in a dense polymer system (see below, section 4.4).

The two-dimensional case is somewhat special [20]: a renormalization of the length a must

be taken into account. Then we get (compare with equation (18)) S(q)�
(
v + q2a2

0
2c0

+ q2 ln qξ
8πc2

0

)−1

for d = 2, where 2a0 is the unrenormalized statistical segment. Note that this S(q) is non-
monotonic: it shows a maximum at a finite q = q∗ ∼ ξ−1e−4πc0a2

0 . Fourier transforming this
S(q) we get G(r) � c0

πa2
0

K0(r/ξ)− 1
4π2

1
v2c2

0

1
r4 (for r � ξ ) in agreement with equation (19).

3.2. Interaction between two solid plates in a polymer melt

Consider two parallel thin solid plates immersed in a polymer system,the separation D between
the plates being much smaller than their lateral size. The effective interaction between such
plates is of fundamental importance: the practically interesting case of curved surfaces can
be reduced to the plain case by virtue of the Deryagin approximation [21]. As before we
first assume that polymer chains are very long: their coil size Rg is much larger than D. It
is well known that dilute polymers induce a depletion attraction between the plates [22, 23]
(of course we assume a complete thermodynamic equilibrium, in particular of polymer chains
in the gap between the plates and outside this gap). At higher polymer concentrations the
range of this attraction becomes progressively shorter: the attraction decays exponentially at
separations larger than the static correlation length, D > ξ . According to the mean field theory
the interaction is totally suppressed in an incompressible polymer melt.
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Below we elucidate the nature of a long-range universal repulsion between the plates at
ξ � D � Rg. We assume that the direct plate/monomer or monomer/monomer interactions
are short ranged (with the length scale comparable with the monomer size) and neglect any
direct interactions of the plates.

For simplicity of the further consideration we assume that the monomer/plate interaction
is chosen in such a way that the monomer density profile is least perturbed outside a few
monolayers near the plate. This assumption does not affect the generality of our conclusions:
obviously the short-range monomer/solid interaction defines the interfacial tension; however
it cannot possibly affect the long-range force between the plates. In other words we consider
the case of neutral solid walls with short-range attraction of monomers exactly compensating
their steric repulsion from the walls. Such surfaces impose reflective boundary conditions on
the monomer distribution: u · ∇c = 0 at the wall, where u is the unit vector normal to the
wall.

As before we write the effective Hamiltonian of the system as H = Hid + Hint, where
Hint is defined in equation (14). We start with the ideal system, v = 0. The ideal-chain
problem is exactly solvable (with any boundary conditions; it is indeed trivial with ‘reflective’
boundaries), the result is no force at all (i.e. the free energy F = F0 of ideal polymers does
not depend on the separation between the walls).

Next we turn on excluded volume monomer interactions, i.e. increase v keeping c0

constant, and employ the theorem on small variations [16]: ∂F
∂v

= 〈 ∂H
∂v

〉 = 〈 1
2

∫
(c − c0)

2 ddr〉.
Thus ∂F

∂v
is related to concentration fluctuations in the gap11:

∂F

∂v
= D A

2

∫
dd−1q ′

(2π)d−1

∑

m

〈|cmq′ |2〉 (24)

where A is the total area of one plate, cmq′ are normal modes of concentration fluctuations,
m = 0, 1, 2, . . .;

c(r) =
∫

dd−1q ′

(2π)d−1 eiq′·r′
{

c0q′ +
√

2
∞∑

m=1

cmq′ cos(qm x)

}

qm = πm
D ; r = (x, r′), the x-axis is perpendicular to the plates (located at x = 0 and D), and

r′ represents d − 1 in-plate coordinates12. Next we calculate the structure factor in the gap
using the RPA:

〈|cmq′ |2〉 = 1

D

1

v + 1/Sid (q)
(25)

where q = √
q ′2 + q2

m , and Sid(q) is the structure factor of the reference ideal system of
Gaussian chains. (The term with m = 0 in equation (24) gives rise to a constant contribution
to the free energy, and hence it does not contribute to the force and can be neglected.) Evaluating
the sum in equation (24) we find the free energy F = F0 +

∫
∂F
∂v

dv of the non-ideal polymer
system:

F − F0 � A

4

∫
dd−1q ′

(2π)d−1

∑̃

m
ln Sid(q) (26)

11 Of course the external monomer pressure outside the gap also depends on v. However this pressure does not depend
on D, and hence it is unrelated to the long-range interaction between the plates. Accordingly any contributions to F
of the form C0 + C1 D, with constants C0, C1 independent of D, are neglected here and below.
12 To get the basis functions of x , cos(qm x), we apply the reflective boundary conditions ∂c

∂x = 0 at the plates. In
principle there is no need for the fluctuation δc to actually obey these boundary conditions. However, in order to
use the bulk structure factor, we must extrapolate the concentration profile in the gap to the whole volume. This
extrapolation must be performed by appropriate reflections (to keep the equivalence of the confined system and the
bulk system) resulting in an even and periodic profile whose standard Fourier expansion involves precisely these basis
functions, i.e. cos(qm x).
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where m is now taking all integer values both negative and positive, and the extra 1/2 factor
is compensating for this doubling of the sum13. This equation is similar to our previous result
equation (8) obtained for the lattice model.

Defining the long-range interaction energy, Flr = F − F0, and evaluating the rhs of the
above equation we obtain

Flr/A � Bd
kBT

Dd−1
(27)

where Bd = �(d/2)ζ(d)
2dπd/2 ; B2 = π

24 ; B3 = ζ(3)
16π . This result is obviously in agreement with

equation (11) obtained in the previous section using the polymer–magnet analogy (note that
Flr should be identified with Ffluct).

Equation (27) is valid for any large enough interaction parameter v such that ξ = a√
2c0v

is much smaller than D. It might seem surprising that it is enough to calculate concentration
fluctuations inside the gap in the mean field approximation (RPA). One reason is that the
dominant contribution to Flr comes from the region of small v (v ∼ a2

D2c0
) where the polymer

system is nearly ideal (in this regime the fluctuations are characterized by the exactly known
structure factor Sid(q)); a simple analysis shows that corrections to the RPA correlation
functions generate just small, subdominant contributions to Flr (in particular, the singular,
non-local, correction to S(q) gives rise to a contribution to Flr of relative order 1

vc2
0 D3 ).

Note that both the dependence on D of Flr and its amplitude coincide with the thermal
fluctuation-induced Casimir interaction found in many systems with soft modes [8], but with
the opposite sign. The physical origin of this difference was mentioned in the introduction: the
long-range repulsion in the polymer melt is not due to any soft fluctuations in the melt,but rather
is due to the subtracted soft fluctuations in the reference ideal polymer system (corresponding
to the lower limit of integration over v). In other words the mean field ideal-chain Hamiltonian
H (0)

id , equation (13), involves soft fluctuation modes formally producing a sort of Casimir
attraction in the ideal system. That is where the non-local term in the ideal-chain Hamiltonian
comes from: it must compensate for the Casimir attraction in the reference system. In the
polymer melt the fluctuation-induced attraction is suppressed, but the non-local term remains
the same, and hence the net repulsion is generated as a result.

So far we assumed infinite polymer chains. With finite chains of N units we must expect
the same interaction for D � Rg, and almost no (exponentially weak) interaction for D � Rg.
The quantitative treatment is analogous to that given above. We consider two cases14:

(i) Monodisperse chains. Here the ideal structure factor is (see for example [3])

Sid(q) = c0 Ng(q2 R2
g), g(x) ≡ 2

x2

(
x − 1 + e−x

)

where R2
g = Nb2/(2d) is the mean square gyration radius of the chains. Using equation (26)

with this Sid we get the interaction energy Flr . In the general case Flr could be obtained by
direct numerical integration/summation in equation (26). For the three-dimensional space a

13 One must bear in mind that c(r) is the coarse-grained function, i.e. q is bounded: q � 1/�. For practical purposes it
is convenient to introduce the coarse graining by an appropriate cut-off factor�(q) in the integrand, such that�(q) = 1
for q < 1/� and�(q) smoothly vanishes for larger q. That sort of coarse graining is implied in replacing the sum in
equation (24) by the regularized sum equal to the sum minus the corresponding integral (

∑̃
m = ∑

m − ∫
dm). Note

that the subtracted integral corresponds to the bulk free energy contribution which eventually precisely compensates
for the pressure outside the gap. Therefore the excess free energy F − F0 can be regarded as the energy of interaction
between the plates.
14 In the case of finite chains the long-range interactions are generated already in the mean field approximation [25];
this mean field effect is neglected here.
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simpler expression for the force per unit area, f = − 1
A
∂Flr
∂D , is obtained:

f = 1

4π2 R3
g

f̃

(
D

πRg

)

, f̃ (y) ≡ 1

2y3

∑̃

m
m2 ln g

(
m2

y2

)

where m is any integer. The reduced function f̃ (y) shows a power-law behaviour for small
reduced distances: f̃ (y) � ζ(3)

2π2
1
y3 for y � 1, i.e. the force f � ζ(3)

8π
1

D3 for D � Rg in

agreement with equation (27). For y � 1 the function f̃ (y) shows damping oscillations;
however f̃ (y) is numerically very small in the regime of oscillations. The force virtually
vanishes for D � 1.5Rg, i.e. when the separation just exceeds the gyration radius.

A similar effective cut-off at D ≈ 1–1.5Rg is expected for the correlation function of
density fluctuations, for the interaction between solid particles in the polymer system, or for
the interaction between lines in the two-dimensional case.

(ii) Next we turn to the case of polydisperse living polymers with Flory molecular weight
distribution: the number of chains of exactly N monomer units (per unit volume) is

ν(N) = c0

N2
0

e−N/N0 (28)

where N0 is the number average of N . The general equation (26) is applicable to the
monodisperse case, but with the appropriately averaged Sid:

Sid(q) =
∫

dN ν(N)	(N, q)

where 	(N, q) = N2g(Nq2b2/6) is the form factor of one N-chain. Thus we get

Sid(q) = 2c0

1/N0 + q2b2/6
.

Next using the identity ln x = ∫ ∞
0

(
1

t+1/x − 1
t+1

)
dt we represent equation (26) as

Flr/A = (F − F0) /A � 1

4

∫
dd−1q ′

(2π)d−1

∑̃

m

∫
dt

(
1

q2b2/6 + 1/N0 + t
− 1

1 + t

)

.

Finally, interchanging the last integration and summation we get after some algebra

Flr/A = 2−dπ
1−d

2

�( d+1
2 )

kBT

Dd−1
hF (D/Rg), (29)

where hF (x) = ∫ ∞
x dt

(
t2 − x2

) d−1
2 2

e2t −1 . For very long chains, Rg � D, we approximate
hF (x) by hF (0) = 2�(d)ζ(d) and thus recover the asymptotic result, equation (27). The
repulsion force (per unit area) is

f = 21−dπ
1−d

2
1

�
(

d−1
2

)
kBT

Dd
h f

(
D/Rg

)
, h f (x) =

∫ ∞

x
dt

2t2

e2t − 1

(
t2 − x2

) d−3
2 .

In particular, for d = 3, f = 1
2π

kBT
D3

∫ ∞
D/Rg

t2

e2t −1 dt , in agreement with equation (10) obtained
using the polymer–magnet analogy. Thus the force is exponentially decreasing at D � Rg;
however this decrease is much weaker than in the monodisperse case (note also that with
living polymers the force is monotonic, i.e. no oscillations). We can speculate that in the
monodisperse case the interaction at D � Rg can be explained by rare ghost configurations
in the ideal reference system. These are ideal polymers stretched to the extent that they are
in contact with both plates and these configurations are exponentially rare. In the case of a
polydisperse solution, these stretched configurations contribute too, but there is an additional
contribution from extra long polymers present in polydisperse solution, which results in slower
decay of the force with the distance.
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4. Long-range interactions: the general case of arbitrary solid obstacles

4.1. The interaction energy

In this section we consider interaction between arbitrary solid objects in a polymer melt not
assuming that the perturbation induced by the presence of the objects is weak (thus, in particular,
the case of solid colloidal particles of any shape is included). As before we start with the case
of infinitely long chains. We may assume that the monomer distribution in the presence of the
particles is known:

c̄(r) = c0 −
∑

i

ci(r − ri ) (30)

where ri is the position of the i th particle, and ci (r − ri ) accounts for the monomers that have
been expelled by the particle (for strictly impenetrable particles ci (r−ri) = 1 if r is inside the
particle, and ci = 0 otherwise). We assume (as before) that the particle/monomer interaction
is short range. We also assume that the distance between the surfaces of the particles is much
larger than ξ . Thus c̄, equation (30), is a simple superposition of localized contributions
ci (r − ri ) that do not overlap.

The effective Hamiltonian of the system can be written as H [c] = H (0)[c] + Hnloc[c],
where the functional H (0)[c] � H (0)

id + Hint can be represented as an integral of the energy
density depending only on c and its gradients, and the non-local term Hnloc[c] is the rest. As
we discussed in the previous sections the non-local term is due to fluctuations and hence it is
relatively small if either Gi � 1 or the cell size � � ξ (the latter condition implies that the
sizes of the particles are �ξ ). Applying the theorem on small variations [16], we get the free
energy F = − ln Z , where Z is the partition function of the system for the given positions of
the solid particles:

F � F (0) + 〈Hnloc〉 (31)

where 〈· · ·〉 means averaging over the ensemble generated by H (0). The first term F (0) coming
from the main Hamiltonian term H (0)[c] can be written as F (0) � H (0)[c̄] + F (fluct), where
H (0)[c̄] is the mean field result, and F (fluct) is the fluctuation correction. Further, the averaged
Hnloc is nearly equal to its value for the averaged monomer profile: 〈Hnloc〉 � Hnloc[c̄]. Thus

F � H (0) [c̄] + F (fluct) + Hnloc [c̄] . (32)

For a concentrated system of interacting polymer chains H (0)[c̄] does not depend on the
positions of the solid particles, since H (0) is local, and the relevant correlation length ξ is
larger than the distances between the solid surfaces: H (0) � const. The same is true for
F (fluct): it is also a local functional of c̄ since there are no soft modes in the concentrated
system. Therefore the (long-range) effective (polymer-induced) interactions between the solid
particles are defined by the last term in equation (32):

Flr � Hnloc [c̄] . (33)

Next we recall that Hnloc nearly does not depend on interactions, i.e. it is nearly the same for
the real system and for the reference ideal system of fictitious non-interacting chains because
interactions of monomer units are local (see the discussion at the end of section 3.1). Therefore
Hnloc can be obtained by analysing the reference ideal system (compare with the approach used
for the system of two solid plates; see equations (25), (26)). Equation (32) for the ideal system
can be rewritten as

Fid � H (0)
id [c̄] + F (fluct)

id + Hnloc [c̄] .
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The important simplification here comes from the fact that H (0)
id [c̄] as defined in the Lifshitz

theory [17, 19] is exactly equal to Fid: Z id = exp(−Fid) = exp(−H (0)
id [c̄]). Therefore

Hnloc [c̄] � −F (fluct)
id . (34)

It is convenient to consider the ideal polymer system in the presence of an external field
U(r) inducing (on the average) the inhomogeneous monomer distribution c̄(r), U(r) → 0
as r → ∞ (physically U(r) is due to interactions of monomer units with the solid particles).
The ideal effective Hamiltonian is

H (0)
id = a2

4

∫
(∇c)2

c
ddr +

∫
U(r)c(r) ddr

(compare with equation (13)). The field U(r) is related to c̄(r) by the standard equations of
the ground state theory [17] which are exact for an ideal system of infinite Gaussian chains:

c̄(r) = ψ2(r), −a2∇2ψ + Uψ = 0. (35)

Taking into account that c̄ is a sum of non-overlapping contributions, we can write

ψ = ψ0 +
∑

i

(ψi (r − ri )− ψ0)

where ψ0 = √
c0, and ψi (r) = √

c0 − ci(r). Note that ψi (r) → ψ0 as r → ∞. Accordingly
we can represent U(r) as a similar sum of non-overlapping contributions:

U(r) =
∑

i

Ui (r − ri ),

where Ui (r) is defined by the Edwards–Lifshitz ground state equation: −a2∇2ψi + Uiψi = 0;
note that Ui → 0 as r → ∞.

The fluctuation free energy formally corresponding to the ideal Hamiltonian H (0)
id is

F (fluct)
id = − ln Z (fluct)

id . The fluctuation partition function Z (fluct)
id is defined as

Z (fluct)
id =

∫
e−�H (0)

id [c′]D[c′]

where c′ = c(r)−c̄,�H (0)
id [c′] = H (0)

id [c]−H (0)
id [c̄] (note that c̄(r) is minimizing the functional

H (0)
id [c]: H (0)

id [c̄] = minc H (0)
id [c]).

Taking into account that fluctuations are weak, |c′| � c0, and using the quadratic
approximation we get

�H (0)
id

[
c′] � 1

2

∫
K (r, r′)c′(r)c′(r′) ddr ddr ′.

Therefore Z (fluct)
id � const(det K̂ )−1/2, where K̂ is the operator corresponding to K (r, r′):

K̂ = (Ĝ0)
−1, and the operator Ĝ0 corresponds to the pair correlation function G0(r, r

′)
= 〈c′(r)c′(r′)〉. Hence F (fluct)

id � − 1
2 ln det Ĝ0 + const. Now using equations (33), (34)

we get the following general expression for the long-range energy:

Flr [c̄] � 1
2 ln det Ĝ0 + const = 1

2 Tr ln Ĝ0 + const. (36)

That is, Flr is related to the concentration correlation function in the reference ideal polymer
system.

For infinitely long ideal chains the correlation function is

G0(r, r
′) = 2ψ(r)ψ(r′)G(r, r′) (37)

where

G(r, r′) =
∫ ∞

0
G N (r, r

′) dN (38)
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and G N (r, r
′) is the partition function of an ideal chain of N monomer units with ends at r

and r′. The function G N satisfies the well known Edwards equation [17]

∂G N

∂N
= −L̂G N

with initial condition G0(r, r
′) = δ(r − r′), and

L̂ = −a2∇2 + U(r). (39)

Note that in the case of solid obstacles (with short-range surface/monomer interactions) the
definition of U , equation (35), implies that a reflective boundary condition (u · ∇Gt = 0)
must be imposed at the solid surfaces as discussed in the previous section. The solution
to this equation for the corresponding operator is Ĝ N = e−N L̂ . Therefore the operator Ĝ
corresponding to the function G(r, r′) defined in equation (38) is Ĝ = L̂−1. Substituting G0,
equation (37) in (36), and taking into account that

Tr ln Ĝ0 = ln det Ĝ0 = Tr ln Ĝ +
∫

[2 lnψ + ln 2] ddr/�d ,

we get

Flr � − 1
2 Tr ln L̂ + const (40)

where
∫

lnψ ddr is adsorbed in the const since it does not depend on the distances between the
particles, and L̂ is defined in equation (39) with U(r) = a2c̄−1/2∇2c̄1/2; see equations (35).
It is interesting to compare the overall structure of Flr , equation (40), with equations (8), (7).

4.1.1. Weakly inhomogeneous system. As a simple application of the above equations
let us calculate the energy of long-range interactions for the case when the concentration
perturbations induced by the particles are weak, |c̄ − c0| � c0. Then we can consider U(r)
as a perturbation related to δc = c̄(r) − c0: U(r) � a2

2c0
∇2δc(r), and write L̂ = L̂(0) + δ L̂,

where L̂(0) = −a2∇2, δL(r, r′) = U(r)δ(r − r′). Expanding the rhs of equation (40) as a
series of δ L̂, noting that the linear term does not contribute to the interaction forces, and thus
keeping only the second-order term, we obtain

Flr � 1
4 Tr

((
δ L̂ Ĝ(0)

)2
)

+ const (41)

where Ĝ(0) = [L̂(0)]−1, i.e. G(0)(r, r′) = 1
4πa2|r−r′| for d = 3. Using the above equations we

get

Flr �
√
π

(2π)d
�(d)�(1 + d/2)

�(d/2 − 1/2)

1

2c2
0

∫
δc(r)δc(r′)

1

|r − r′|2d
ddr ddr ′

in agreement with equation (17) (we omit the inessential constant term). In particular, the
energy of interaction of two particles at a distance D (D is much larger than the particle size)
in the three-dimensional space is

Flr � 3

16π2

V1V2

D6
(42)

where Vi = ∫
ci(r) d3r is the effective volume of the particle i , i = 1, 2. The last equation is

in agreement with the results of section 3.1 (see equation (23)). The result, equation (42), has
a remarkable analogy with the van der Waals interactions [21], except that the sign is opposite.
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4.1.2. Further generalizations. Equation (40) can be further simplified using the identity

− ln L̂ =
∫ ∞

0

dt

t

(
e−L̂t − e−t

)
.

Taking into account that e−L̂t = Ĝt (r, r
′) is the Green function, we get

Flr � 1

2

∫
ddr

∫ ∞

0

dt

t
Gt(r, r) + const. (43)

Applying this equation to the interaction of parallel solid plates we recover the previously
obtained result, equation (27).

So far in this section we have assumed that polymer chains are infinite. Let us now consider
the general case of finite chains. Then the long-range forces (with the range of the order of the
typical coil size) are generated already in the reference ideal system [25], i.e. H (0)

id [c̄] �= const,
H (0)[c̄] �= const. Thus

Flr � F (0)
lr + F (1)

lr .

Here F (0)
lr stands for the mean field non-local free energy due to the chain ends (i.e. F (0)

lr comes
from the non-local part of H (0)

id ; see [25]). The second term F (1)
lr = −F (fluct)

id accounts for the
fluctuation-induced long-range interactions; F (1)

lr is defined in equation (36). The derivation
of this equation is obviously also valid in the general case, for any distribution of chain length:

F (1)
lr � 1

2 Tr ln Ĝ0 + const.

The problem is thus reduced to calculation of the ideal-chain correlation function G0(r, r
′).

This is a classical problem; however there is no explicit general solution even for a
monodisperse system if it is not uniform (i.e. U �= const). Fortunately, the problem is
simpler in the case of a Flory distribution; equation (28). In this case, the ‘infinite-chain’
equations (37), (38) are applicable once G N is replaced by G N e−N/N0 . This is also formally
equivalent to replacing L̂ by L̂ + 1/N0. Thus the general equations (40), (43) are modified to
(compare to equations (7), (8))

Flr � − 1
2 Tr ln

(
L̂ + 1/N0

)
+ const (44)

Flr � 1

2

∫
ddr

∫ ∞

0

dt

t
Gt(r, r)e

−t/N0 + const. (45)

Note the analogy between equation (44) and equations (7), (8): 1/N0 plays the same role
in equation (44) as the magnetic field h in the magnetic formalism. These equations define
the fluctuation-induced interaction energy for a concentrated system of polymers with a Flory
distribution of the molecular weight, N0 being the number average polymerization degree.
Calculating the energy of the polymer-induced interaction between two parallel solid plates
using the last equation we get a result which is identical to equation (29).

4.2. The role of cycles

The general result, equation (43), can be interpreted in the following ‘geometrical’ way (for
simplicity we assume a three-dimensional system, d = 3): consider a living melt of bi-
functional monomer units. If all bonds are saturated then monomers can form either infinitely
long linear chains or rings. The fraction of rings is proportional to the probability p that a
growing chain of monomers will meet its first monomer, p ∼ 1/(c0b3), where c0 is mean
monomer concentration. Let us assume that c0b3 � 1, and hence p � 1, i.e. nearly all
monomers belong to linear chains, and just a small fraction to rings. The interaction between
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rings is then nearly totally screened by the linear chains, i.e. the living system may be considered
as a weak, nearly ideal ‘solution’ of rings in the linear matrix. Its free energy is

Fliv = F + Fring

where F is the free energy of linear chains, Fring = −lnZ ring, and Z ring = exp(
∑

N Z N ) is
the grand partition function of the ideal system of rings. Here Z N is the statistical weight
(a priori probability) of a ring of N monomers. Now we note that there are no long-range
interactions in the living system since its effective Hamiltonian is a local functional of the
monomer distribution c(r) (local monomer interactions plus local bonds between monomers)
and any soft modes are suppressed by monomer interactions. Hence Fliv = const in the
long-range sense, and so F = const − Fring = const +

∑
N Z N . Thus, taking into account that

Z N = 1
2N

∫
G N (r, r) d3r ( 1

2N is the symmetry factor reflecting equivalence of all N monomers
in a cycle, and also equivalence of the two ways of counting them, forward and backward) we
arrive at exactly equation (43) for Flr = F + const. Neglecting the constant term we observe
that Flr is equal to the number of cycles in the corresponding living polymer system (times
kBT ).

It is important to stress that the above derivation of Flr in terms of ghost cycles is rigorous.
Moreover, it is more general than the derivations considered in the previous sections since
the picture of ghost cycles is applicable also when fluctuations are not weak, i.e. when
Gi = v

c0b6 ∼ 1. The assumption c0b3 � 1 is actually not essential (note that this condition
also guarantees that the mean field theory is quantitatively applicable in the melt). The reason
is that only long enough rings contribute to the long-range force, and the weight fraction of
such rings is always small, even if c0b3 ∼ 1. In this case we introduce an appropriate (large
enough) coarsening length scale �, � � ξ (see the discussion at the end of section 3.1), and
forbid any cycles of size smaller than�. Thus the weight fraction of the allowed (large) cycles
can be made however small, so that the cycles do not interact with each other. However they
do interact with the ‘sea’ of linear chains. Taking also into account that the statistics of each
chain fragment (of an intermediate size, larger than ξ , but smaller than the characteristic length
of the inhomogeneities ci (r) of the overall concentration distribution c̄(r), equation (30)) is
nearly Gaussian, we can write the energy of a coarse-grained ring configuration r(n) as

H [r(n)] �
∫ [

1

4β

(
∂r

∂n

)2

+ U(r(n)) +
3

2
ln (4πβ)

]

dn

where n counts the monomers along the ring, U = U(r) is the energy of interaction of a
ring unit with surrounding chains and with immersed objects (U(r) → 0 as r → ∞), and
β = (b∗)2/6. Here b∗ is the renormalized (the actual) statistical segment. In the general case,
Gi ∼ 1, b∗ depends on the concentration: b∗ = b∗(c), and therefore β is position dependent:
β = β(r) = [b∗(c̄(r))]2/6 (we assume that the function b∗(c) is known). The partition
function of an N-fragment with ends at r and r′ is G N (r, r

′) corresponding to the operator
Ĝ N = e−N L̂ , where

L̂ = −∇β(r)∇ + U(r). (46)

Obviously the last equation is generalizing equation (39). It is important that exactly the same
monomer–monomer correlation function G N (r, r

′) is applicable to fragments of both rings
and linear chains. Since the linear chains are long, their monomer distribution is c̄(r) = ψ2(r),
where ψ(r) must satisfy the generalized Edwards equation L̂ψ = 0. The last two equations
serve to specify U(r) for a given c̄(r):

U(r) = c̄−1/2∇β∇ c̄1/2. (47)
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Thus equation (43) for the long-range interaction energy is applicable in the general case,
Gi ∼ 1, if Gt (r, r) is defined as the partition function of a ring: Gt(r, r) = 〈r|e−t L̂ |r〉, where
L̂ is defined in equation (46). Therefore

Flr � 1

2
Tr

∫ ∞

0
e−L̂t dt

t
+ const.

The last equation can be transformed to equation (40), but with L̂ now defined in equation (46).
Thus equations (40), (46), (47) define the energy of long-range interactions in the most general
case, when fluctuations are not weak, Gi ∼ 1. This approach is also valid for finite chains with
a Flory distribution of molecular weights; equation (44) should be used instead of equation (40)
in this case.

Let us find the non-local energy for a weakly perturbed system of infinite polymers in the
regime of fluctuations, Gi ∼ 1. Following the approach outlined in section 4.1.1 we write:
c̄(r) = c0 + δc(r), β(r) = β0 [1 − λδc/c0], where

λ = −2
∂ ln b∗(c)
∂ ln c

at c = c0.

Using equations (46), (47) we split the transfer operator as

L̂ = L̂(0) + δ L̂

where L̂(0) = −β0∇2, δ L̂ � β0λ

c0
∇δc(r)∇ + U(r), and U(r) � 1

2c0
∇2δc(r). Using then

equation (41) we get for d = 3

Flr � 3

(4π)2
1 − 2λ + 2λ2

2c2
0

∫
δc(r)δc(r′)

1

|r − r′|6 d3r d3r ′.

This result agrees with the last term in equation (21) and provides the unknown prefactor:

κ∗ = 1 − 2λ + 2λ2.

We stress that the above equation is exact: in effect it incorporates the fluctuation corrections
of all orders. Thus the long-range correlation function of concentration fluctuations for d = 3
is (see equation (22))

G(r) � − 3

(4π)2
κ∗

v2c2
0

1

r6
, r � ξ.

The prefactor in the last equation is thus related to the osmotic compressibility of the system
and to the slope of the concentration dependence of the effective statistical segment. The latter
dependence was calculated by Edwards [26] in the regime of weak fluctuations (Gi � 1).
For a semidilute solution in the good solvent regime the coil size (and therefore b∗) follows

a scaling law: Rg ∝ c− 2ν−1
2(3ν−1) , where ν ≈ 0.6 is the Flory exponent. Then λ = 2ν−1

3ν−1 ≈ 0.25,
and κ∗ ≈ 5/8. Possibly much larger values of κ∗ can be attained in polyelectrolyte solutions
where the coil size can strongly depend on the concentration. Therefore charged polymer
systems (where electrostatic interactions are well screened beyond the Debye radius) can be the
best candidates for providing experimental verification of the predicted long-range correlation
effects.

Let us now turn to the polymer-induced interactions of large solid particles of size �ξ .
Then to a good approximation the mean concentration c̄ is defined by just two values: c̄ = 0
inside a particle, and c̄ = c0 outside. Thus the concentration is constant in the region accessible
for the chains, and therefore the chain statistical segment is constant. In this case the transfer
operator, equation (46), coincides with that for ideal chains, equation (39), provided that the
statistical segment is renormalized, b → b∗. Therefore the expressions for the long-range
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interaction energy derived for Gi � 1 stay valid also in the general case (Gi ∼ 1) if the
renormalization is performed. For example, if Rg in equation (29) is defined as the actual rms
gyration radius of a chain with the mean molecular weight, then this equation is generally
valid. In the case of infinite chains the long-range energy does not depend on b; therefore
the long-range interaction between large solid particles is universal when the relevant length
scales are much larger than the mean field correlation length ξ , but are much smaller than the
typical chain size. In particular, equations (27), (51) are universal, i.e. they are asymptotically
valid for any Gi.

The above interpretation of the long-range effect in terms of subtracted cycles is also
supported by the consideration based on the polymer–magnetic analogy. In fact, in section 2
we showed that the amplitude of long-range interactions is proportional to the number of
transverse (Goldstone) modes, n − 1, where n is the number of ‘spin’ components, which is
simultaneously equal to the extra weight of a cyclic polymer chain. Therefore it is clear that
the cycles do contribute to the long-range force which linearly depends on their concentration.
The special case n = 1 corresponds to the living system of bi-functional units, where cycles
form with the natural weight = 1. This corresponds to the universality class of the Ising model.
In this case the number of modes of long-range interaction is n − 1 = 0, i.e. the long-range
effects of linear chains and of cycles cancel each other, in agreement with what was deduced
just above.

4.3. Non-local pressure and stress tensor

Consider a polymer melt (or a concentrated solution) with solid (colloidal) particles in
it. As before we assume for simplicity that all direct interactions (monomer/monomer,
monomer/solid, etc) are short range. The free energy F of the system is a sum of the local
free energy that depends on the total volume and the total surface area of the particles (the
typical particle size is assumed to be much larger than the polymer static correlation length
ξ ) and non-local contribution Flr . The total pressure exerted on the solid surface is then
� = �0 +�lr, where �0 is a constant pressure due to the local energy (i.e. �0 characterizes
the polymer system with suppressed non-local free energy, so �0 is basically the classical
mean field pressure), and �lr is generated by the non-local interactions. Below we focus on
the non-local pressure, omitting the constant�0 which is irrelevant for what follows15.

The non-local pressure can be defined in the following way (the subscript ‘lr’ is omitted
below). Let a solid surface shift a bit towards the polymer (A′ → A). The corresponding free
energy increment δFlr must be equal to the work against pressure: δFlr = ∫

�δh d A, where
d A is the surface area element, and δh = δh(r) is the normal displacement of the surface.
Using equation (43) we get

δFlr = 1

2

∫
ddr1

∫
dt

t
δGt (r1, r1)− 1

2

∫
d A

∫
dt

t
Gt (r, r)δh

where integration over the whole system in assumed in the first integral. In order to find δGt

we note that a surface shift is equivalent to a change of the boundary conditions: the ‘flux’
J = −a2u · ∇rGt (r, r1) d A across the shifted surface element d A was non-zero before the
surface shift and it is zero after it (u is the unit vector normal to the surface A). Therefore

δGt (r1, r1) = a2
∫

d A δh
∫ t

0
dt ′ ∇r

[
Gt−t ′(r1, r)∇rGt ′(r, r1)

]
.

15 In the case of a polymer solution one should distinguish between total pressure and osmotic polymer pressure;
however this distinction only affects the constant term, i.e. there is no difference between the non-local osmotic
pressure and non-local total pressure since the solvent as such does not produce any long-range forces between solid
objects immersed in the melt.
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Thus after some vector algebra we get16

� = a2

2
div

[∇rG(r, r′)
]
r′=r

where G(r, r′) = ∫ ∞
0 Gt(r, r

′) dt is defined in equation (38).
Taking into account that

u · ∇rG(r, r′) = 0 (48)

for any r on A and for any r′, we may rewrite the pressure as

� = a2

2
∇r · ∇r′ G(r, r′)|r′=r+0 (49)

where 0 is an infinitesimal vector.
We are now in a position to define the (non-local) stress tensor σαβ = −�αβ by demanding

two obvious conditions: (i)� = uαuβ�αβ at the solid surfaces, i.e.�αβ generates the correct
surface pressure, and (ii) ∂

∂rβ
�αβ ≡ 0 in the bulk, i.e. mechanical equilibrium. Assuming the

general form

�αβ = C1δαβ∇r · ∇r′ G(r, r′) + C2
∂

∂rα

∂

∂r ′
β

G(r, r′)

we obtain

�αβ = a2

2
δαβ∇r · ∇r′ G(r, r′)− a2 ∂

∂rα

∂

∂r ′
β

G(r, r′) (50)

where r′ = r + 0. Using the general relations G(r, r′) = G(r′, r),−∇2
r G(r, r′) = 0 for

r �= r′, and the boundary condition, equation (48), it is easy to prove that �αβ = �βα is
symmetric as it should be, and that the stress vector −�αβuβ at a solid surface is always
normal to it.

An analysis also shows that the first isotropic term in equation (50) corresponds to the local
pressure increment (δ�local � ∂�local

∂c δc � vcδc) due to the small concentration inhomogeneity
δc = c − c0 generated by non-local interactions.

So far in this section we assumed that polymer chains are infinite. For finite chains with
a Flory molecular weight distribution we start with equation (45) instead of equation (43).
This substitution is equivalent to replacing Gt(r, r

′) by Gt(r, r
′)e−t/N0 in all the equations. In

particular, equations (49), (50) are valid also for finite chains provided that G(r, r′) is redefined
as

G(r, r′) =
∫ ∞

0
Gt(r, r

′)e−t/N0 dt

(compare with equation (38)).

4.4. Interaction of two spherical particles

Consider two spherical colloidal particles of radius Rs (Rs � ξ ) at the distance D (D � Rs,
but the polymer coil size is much larger than D). Using either equation (49) or (50) we can
calculate the interaction force (and hence the interaction energy) between the two spheres by
integrating the pressure force either at the surface of one sphere or at the mid-plane between
the spheres. The result for the interaction energy Flr for d = 3 is

Flr = 5

6
kBT

R6
s

D6
= 15

32π2
kBT

V 2
s

D6
, (51)

16 There is a subtlety about this derivation: one should exclude a narrow surface layer (of thickness l → 0) from the
region of integration over r1 in order to avoid certain singularities.
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where Vs is the sphere volume. Equation (51) is essentially in agreement with equation (42),
with the additional ‘form factor’ of a solid sphere equal to 5/2.

For completeness we also consider the case of small solid particles of size Rs � ξ at the
distance D � ξ , with short-range interactions between the monomer units and the particle
surfaces. We start with the non-adsorbing case, i.e. hard-core (steric) repulsion. Then the
energy of the effective (polymer-induced) interaction between the particles is proportional to
the correlation function G(D) [27]:

Flr = −kG(D). (52)

The factor k is [27]

k = (F1/c0)
2 (53)

where F1 is the free energy cost for the particle insertion in the bulk of solution. We consider
two cases:

(i) Mean field regime (Gi � 1). Then F1 is mainly coming from the square-gradient (ideal-
chain) free energy, equation (13), concentrated in the region r − Rs ∼ Rs (here r is
the distance to the particle centre). Minimizing the rhs of equation (13) with boundary
conditions c = 0 on r = Rs, c → c0 for r → ∞, we get

F1 � 4πa2 Rsc0.

With equation (20) we obtain

Flr � 1

12

b4 R2
s

v2c2
0

1

D6
, ξ � D � b.

(ii) Scaling regime (semidilute solution with swollen concentration blobs). In this case
F1/c0 ∼ R3−1/ν

s b1/ν (see [27]), and vc0 ∼ (c0b3)
1

3ν−1 , so

Flr ∼ R
6− 2

ν
s b

2
ν
− 6

3ν−1 c
− 2

3ν−1

0

1

D6
.

Finally let us turn to the case of critically adsorbing particles in the mean field regime
(Gi � 1). Here the short-range attraction between the monomer units and the particles
compensates the hard-core repulsion so that the monomer concentration profile outside the
particles is unperturbed (the so-called ‘neutral’ solid boundaries). Then equation (51) is
applicable also for Rs ∼ ξ and for b � Rs � ξ since it is the local concentration profile
that defines the amplitude of the long-range interaction17.

17 Note that equations (52), (53) are not applicable in the latter case. To see this we have to recall why these equations
are valid at all, i.e. why the interaction is defined by the unperturbed linear response function which is proportional
to G(r). The basic idea is that a small particle just weakly perturbs the polymer system; i.e. the typical energy of
interaction between the particle and a relevant interaction blob of size ξ is small, �kBT . This is true with hard-core
particle/monomer repulsion if Rs � ξ . This is also true for critically adsorbing small particles; however in this
latter case there is a subtle balance between the hard-core repulsion and the attraction, so that the net energy is zero
in the first approximation, and therefore higher order corrections become important: for example, triple interactions
(particle + 2 blobs) in addition to the pairwise interaction (particle + 1 blob). For that same reason equation (53) can
also lead to incorrect results for the interaction of two probe monomers (see equation (23)) since a probe monomer is
virtually equivalent to a small critically adsorbing sphere.
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5. Discussion

(1) Polymer melts and other concentrated polymer systems have been viewed for years as ideal
objects for a mean field analysis. For a long time it was generally believed that all correlations
and interactions in these systems (with however long polymer chains) are short range, the
decay length being comparable to the monomer unit size [1–3, 5, 6, 25]. It is proved in this
paper that this is not true: long-range correlations and interactions are inherent in concentrated
polymer systems. We emphasize that the earlier theoretical analysis [5, 6] was based upon
mean field arguments, while we predict a new type of fluctuation-induced long-range force.
Note that the predicted long-range interactions are weak enough that they do not much affect
the polymer conformations: the chains remain nearly Gaussian in a melt in accordance with
the Flory theorem [3].

We show that the novel long-range effect is related to the fluctuation-induced (Casimir)
interactions [7]. There are two generic features of most long-range Casimir forces [8–10]:

(i) they are due to fluctuations of massless fields (scale-free fluctuations, Goldstone modes);
and

(ii) they are essentially attractive.

In view of these features the long-range repulsion in homopolymer melts (that do not show
any soft fluctuation modes) predicted in the present paper may seem to be really unexpected.
We thus introduce a major new concept that widens the theoretical understanding of polymer
statistical physics.

Several complementary theoretical arguments elucidating different physical aspects of
the predicted long-range effects are proposed: employing the polymer–magnetic analogy [3]
we relate the polymer-induced long-range (PILR) forces to the Casimir effect due to n − 1
transverse Goldstone modes of the relevant n-vector order parameter fluctuations with n = 0.
The number of Goldstone modes is negative and hence repulsive interaction is predicted, i.e. the
‘anti-Casimir’ effect.

The second way to derive the same effect is to consider a system of non-interacting chains
as a reference system, and to note that the long-range force due to soft concentration fluctuation
modes in the reference ideal system must be exactly balanced by a ‘polymeric’ contribution that
is independent of excluded volume interactions. The long-range repulsive forces in polymer
melts are thus related to the subtracted Casimir attraction induced by the fluctuations in the
reference ideal system.

Finally we attribute the long-range interactions to the effect of large polymer rings that
must be eliminated from a living polymer system: the large loops as such introduce long-range
effects, and therefore the subtracted (ghost) loops must be responsible for the long-range forces
of the opposite sign. This hints at a relation between the fluctuation-induced Casimir force
and large-scale geometrical cycles.

(2) We show that in the general case the total energy of PILR interactions between solid
objects in a polymer system involves two basic contributions: the mean field (depletion)
attraction that dominates at short distances, and the fluctuation-induced repulsion that
dominates at long distances. The latter follows a power law for separations smaller than
the polymer size Rg. For example the energy of long-range interaction of two solid spheres
Rs scales as kBT ( Rs

D )
6 if the distance D is much larger than Rs, and the interaction energy of

two parallel solid plates (per unit area) is ∼ kBT
D2 . The energy of interaction of two solid spheres

is of the order kBT if D (the distances between their surfaces) is comparable to their size; the
energy is larger if Rs > D.



S1770 A N Semenov and S P Obukhov

The predicted long-range interactions are due to the linear chain structure of polymers.
Yet they are insensitive to the details of this structure, showing remarkable universality (see
equations (27), (51)). For example, the interaction nearly does not depend on concentration:
the same interaction is predicted in a melt and in a semidilute solution; it is only the range of
validity of the long-range power laws (ξ � D < Rg) that depends on the concentration.

(3) The long-range repulsion between solid plates, see equation (27), can be easily
interpreted in terms of ghost cycles. In fact, the probability of cyclization in a gap D between
the plates is higher than in the bulk: a linear chain with Gaussian size >D is ‘compressed’
in the gap, so its ends meet each other more frequently. Hence the partition function of
cycles is higher in the gap than in the bulk, leading to a negative contribution to the free
energy proportional to the number Nc of the relevant ‘compressed’ cycles, i.e. those of size
�D. When the cycles are removed the free energy therefore increases by the same amount,
Flr ∼ Nc. The concentration of cycles of N units (with size R ∼ N1/2b) is cN ∼ 1

N
1

R3 .

Therefore Nc ∼ AD
∑

R>D cN ∼ AD 1
D3 , and the interaction energy per unit area is Flr

A ∼ 1
D2

in agreement with equation (27).
(4) The long-range interaction between the two plates (or between any solid objects

immersed in the polymer) is insensitive to short-range wall–monomer forces. In particular,
equation (11) is valid both for absolutely repulsive and for ‘neutral’ walls. The change of the
wall–monomer interaction from neutral to repulsive is equivalent to an effective shift of the
wall position to the correlation length ξ towards the bulk of polymer, i.e. to an unimportant
renormalization of the effective distance: D → D − ξ .

Note also that the monomer density profile near a single solid wall is perturbed: c =
c0 + δc(x). The long-range perturbation δc(x) is positive and decays as 1/x3 with the distance
x to the plate. δc is also not sensitive to the wall–monomer interactions: a change from neutral
to repulsive interactions is equivalent to introducing an additional repulsive layer of thickness
ξ near the wall (we assume that the range of wall–monomer interactions is shorter than ξ ). The
additional perturbation δc(a) due to this repulsive layer is proportional to the bulk response
function G(r − r′) integrated over the layer: δc(a)(r) ∼ ∫ G(r − r′) d3r ′. Using equation (20)
we get δc(a)(x) ∼ ξ/x4. Thus the monomer density perturbation changes from δc ∼ 1/x3 to
∼1/x3 + ξ/x4, which is equivalent to changing x to x − ξ ; i.e. the effect of the wall–monomer
interactions is indeed small for x � ξ .

(5) Polymer-induced long-range repulsion between solid walls and other objects in
concentrated or semidilute polymer solutions was predicted in [25]. The two long-range
effects considered in the present paper and in [25] should not be mixed. The most important
differences are:

(i) The interactions considered in [25] are due to the polymer chain ends: the long-range
force is inversely proportional to the polymer molecular weight, i.e. it is vanishing in the
limit of very long chains (N → ∞) when ends are suppressed. On the other hand the
effect considered in the present paper becomes stronger as N is increased.

(ii) The long-range force of [25] is inversely proportional to the bulk osmotic modulus of the
system, so it is null for an incompressible polymer melt. This is in contrast to the universal
repulsion, equation (11), predicted also for melts.

(iii) The long-range interaction [25] is a mean field effect, while the effects considered in the
previous sections are due to fluctuations.

(6) The repulsive interactions of origin other than that considered in our paper were
discussed before [29, 30]. In particular, interactions between solid objects (colloidal particles
or solid walls) in polymer solutions were considered for the following two typical cases:
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(i) Semidilute polymer solution at nearly theta conditions and close to the coil overlap
concentration [29]. The repulsion force discussed in [29] is most probably related to the
end effects [25] considered in the previous clause; i.e. its origin is qualitatively different to
the long-range mechanism considered in the present paper. In fact, all the basic conditions
adopted in [29] (θ solvent, overlap concentration, separation ∼Rg, monodispersity) work
to enhance the end effects.

(ii) Adsorbed polymer layers formed at the solid surfaces [30]. The layers can repel each
other when they start to overlap and thus can prevent aggregation of colloidal particles.
This repulsion can be either a non-equilibrium effect (due to constrained relaxation of
adsorbed polymer chains because of high effective monomer/solid friction), or it can be
due to interactions of tail segments of adsorbed chains [31]. Again, these effects have
nothing to do with long-ranged non-mean field forces analysed in the present paper.

(7) We show that the correlation effects in a polymer melt (or in a concentrated solution)
are not totally screened beyond a few monomer sizes (correlation length ξ ), but rather they
extend up to a much longer length scale, the polymer coil size Rg. The correlation function
of concentrations fluctuations G(r) (which can also be interpreted as a correlation function of
vacancies for a lattice model) shows a similar behaviour: it is positive and decreasing with r
at short distances r � ξ (ξ is the mean field correlation length) and negative and increasing
for large distances, r � ξ , with a depletion minimum at an intermediate r . G(r) follows
the 1

r6 power law for ξ � r � Rg in three dimensions (d = 3). The effective monomer
interaction potential v∗(r) follows the same power law. The correlation functions show a
genuine exponential decay only at large distances exceeding the polymer coil size Rg. Thus
the genuine correlation length in a polymer melt is always of the order of the polymer coil size
Rg, i.e. it is much larger than the mean field static correlation length ξ .

(8) We predict that the coherent structure factor S(q) of a polymer melt shows a weak
singularity at q → 0 due to a non-classical qd term in the denominator (see equation (18)).
The q3 correction term in the inverse intra-chain structure factor (for d = 3) was also obtained
in the one-loop approximation in [24]. A similar term for the inter-chain structure factor and
its relation to the Goldstone singularity are discussed there as well. This is in agreement with
the results of the present paper, equation (18).

(9) Back in the 1980s when the polymer–magnet analogy was intensively discussed, it
was noticed [13, 28] that the magnetic susceptibility χ is negative in the ‘polymeric’ limit
of zero spin components, n → 0. This effect is also due to the negative number (n − 1 per
spin) of transverse modes. Hence the following question is rather natural: whether the two
effects, the negative χ and the long-range interaction, are related. The point is clarified below.
Firstly, we note that the fact that magnetic χ is negative does not cause any problems for the
corresponding polymer system [13, 28], but rather merely gives rise to a correction term in the
free energy of a polymer melt (or a concentrated solution):

F(N0) = F∞ + Fid − 2ε/N0 + const/N3/2
0 . (54)

Here F is the free energy per monomer unit, F∞ is its limit for infinite chains, N0 → ∞, Fid

is the ideal-gas contribution, −ε is the excess free energy per chain end, 2/N0 is the fraction
of ends, and the last term is related to the magnetic susceptibility χ which is both singular
and negative. In fact, by the theorem on small variations the last term is also involved in the
magnetic energy F̃(h) � F̃reg(h)+const h3/2, where F̃reg(h) is the regular part of the magnetic

energy, and h ∼ 1/N0 is the magnetic field. Therefore χ = − ∂2F̃
∂h2 � −const h−1/2 [32, 33].

The dependenceF(N0) can be deduced from the results of the present paper. For example,
note that F (0) in equation (31) must be a regular function of the end concentration. Therefore
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a singular term may only come from the non-local energy Flr . Thus, using equation (45) for
the uniform system, we get (for d = 3)

F(N0) = F

c0V
= 〈regular part〉 +

1

2c0

1
(
4πb2/6

)3/2�(−3/2)
1

N3/2
0

where �(−3/2) = 4
3

√
π . This is in agreement with equation (54), and we also provide

the prefactor. Therefore the singular free energy term is a part of the total non-local energy.
Physically this term is due to the weak effective repulsion between the chain ends: the total free
energy increases when two ends (perhaps of different chains) come close to each other. This
interaction is similar to the interaction of micelles in a block-copolymermelt [34]; in particular,
it also follows the Coulomb law: Fint ∼ 1/r for r � Rg, where r is the distance between
the ends. We conclude that although the singular free energy term (related to the negative
magnetic susceptibility) is also related to the non-local free energy, this term as such is not
responsible for the long-range forces considered in this paper: the singular term is related to the
long-range interactions of chain ends that disappear in the limit of infinite chains, N0 → ∞.
On the other hand, the long-range effects considered in sections 2–4 do not disappear, but
rather are enhanced in this limit.

(10) It is remarkable that the polymer-induced repulsion is rather similar to the
van der Waals (VdW) interaction: the same power law and, in fact, the same magnitude
in the case of the thermal VdW forces. Hence we arrive at the exciting possibility of reversing
the sign of the effective long-range interaction, i.e. the possibility of net repulsion instead of
the usual VdW attraction.

It is well known that many colloidal systems can be stabilized against aggregation by
adding polymers (in the regime of overlapping coils) [29]. The universal long-range interaction
elucidated in this paper can significantly contribute to the stabilization. In fact, the polymer-
induced repulsion between solid walls (see equation (27)) is practically always stronger than the
thermal (zero-frequency) VdW attraction (the VdW interaction energy for solid walls is [21]
FVdW/A � −AH/(12πD2), where AH ≈ (3/4)kBT (ε1 − ε2)

2/(ε1 + ε2)
2 is the Hamaker

constant, ε1 and ε2 are the dielectric constants of the solid and solution respectively). Note
that the thermal VdW force is proportional to the square of dielectric contrast of the media;
thus it can be further suppressed by matching the dielectric properties of colloidal particles
and polymer solution.

Thus the PILR repulsion may serve to stabilize colloidal suspensions, or it may arrest
phase separation in binary polymer systems at an intermediate stage (yielding kinetically
stable emulsions).

(11) Turning to possible experimental verifications of the predicted long-range effects
and their practical implications, we note that the VdW forces are thermally induced at scales
larger than λT = h̄c

kBT � 10 µm. At shorter length scales the VdW interaction is enhanced by
quantum effects, and hence the VdW forces would then typically mask the polymer-induced
repulsion. However there are some special cases where the repulsion could dominate. One
possibility is to reduce the VdW attraction by selecting polymer/colloidal (or polymer/polymer)
pairs with matching refractive indices. Another possibility is to study phase separation in a
binary polymer solution with soluble but incompatible polymer components, A and B (a typical
example is an emulsion of A droplets in the B matrix with solvent penetrating both A and B).
The long-range repulsion is independent of concentration, while the VdW contrast between the
components must be proportional to the concentration, so the repulsion must dominate at low
enough concentrations (dilution to about 20% of polymer is expected to be enough). A third
approach is to consider the long-range effects in thin films, i.e. essentially in two dimensions:
the polymer-induced 2D repulsion energy scales as 1/r4, i.e. it must dominate over the VdW
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attraction at large enough distances (the latter still scales as 1/r6 since polymer confinement
does not affect the 3D nature of electromagnetic fluctuations).

Measuring the equilibrium polymer-induced force between nearly parallel solid walls at
short separations can be complicated because of dynamical effects: decreasing the separation
requires that polymer must flow out of the gap, this process is opposed by strong polymer/wall
friction. A possible way to enhance the relaxation is to resort to thin plates with holes that
would allow for faster polymer exchange between inside and outside regions. Of course the
fraction of holes must be small enough that the very long-range interaction between the plates
is not affected. Let us clarify the latter requirement assuming holes of diameter δ � D,
occupying the fraction w of the plates. It can be formulated as: Consider a chain fragment of
the relevant length (of ND ∼ D2/b2 monomers); the interaction is not affected by the holes
if the probability p of the fragment penetration through a hole is negligible, p � 1. The
fragment ND can be considered as a chain of blobs of size δ, with the number of such blobs
∼D2/δ2. With Gaussian statistics the number of blobs near the surface is ∼D/δ, and the
probability of meeting of a blob and a hole is p ∼ wD/δ. Thus the relevant conditions are:
wD � δ � D.

(12) An investigation of the predicted effects by computer modelling is also invited. The
major advantage here is that VdW interactions can be easily switched off in simulations.
Another obvious advantage is that simulations can be faster in two dimensions where the
predicted long-range effects are stronger. Note that in two dimensions a certain amount of
crossings between fragments of polymer chains must be allowed since

(i) the long-range interactions in 2D are predicted just for that sort of model with an energy
penalty for each crossing [20];

(ii) with possible crossings the simulation dynamics is simpler.

The following simulation studies seem reasonable in this regard:

(a) To consider concentration fluctuations in polymer solutions, and to obtain the correlation
function G(r) for ξ < r < Rg. The additional advantage here is the possibility of
modelling a macroscopically homogeneous system (with periodic boundary conditions)
which is convenient for gathering the statistics since every pair of monomers (at a given
distance r ) contributes to the result. The ‘signal to noise’ ratio (s/n) is then inversely
proportional to square root of the total number of monomer units in the system, and in
addition it is proportional to 1

c2
0r6(∂�/∂c0)

3/2 . In the semidilute regime (when the polymer

volume fraction is small, φ � 1) the ratio s/n is small; it is proportional to φ5/8 for r ∼ ξ .
s/n is also small in the melt (φ = 1) because of its high compression modulus ∂�

∂c0
. Thus

the optimum can be achieved for the intermediate case, i.e. in a concentrated solution (say,
for φ ∼ 1/4).
Both off-lattice and lattice simulations are possible. In the lattice case G(r) can be
interpreted as the correlation function of vacancies. In the case of off-lattice simulation,
explicit solvent monomers (tracers) could be added and their correlations analysed. There
is another interesting possibility for simulating correlations between small solid spheres
immersed in a polymer melt. The idea is first to do simulations without spheres, but then
in each resulting polymer configuration to determine the void regions, to randomly place
solid spheres in these regions, and to study the correlation function of these spheres.

(b) To consider interaction of two solid plates in a polymer melt (or a solution). The advantage
here is that the total interaction energy may be high since it is proportional to the plate area
(i.e. eventually to the simulation box size). That sort of simulation was already carried
out [22]; however the precision of the data for the force (around 10% relative to the total
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pressure) was not good enough to allow for an unambiguous conclusion (though a hint of
repulsion at rather short distances can be noted from the data for the concentrated case).
The disadvantage of the scheme employed is the necessity to simulate a large amount of
polymer solution outside the plates in order to imitate the ‘bulk’ properties. We suggest
performing simulation in a small simulation box with periodic boundary conditions. We
can then estimate the PILR force between the plates inside the box and the same force
between these plates because of the periodic boundary condition, and check the simulation
results against the predicted difference of the two forces.

In order to improve the force resolution we suggest considering free (rather than fixed)
parallel solid plates, i.e. a fluctuating gap between the plates. One problem is allowing for an
efficient relaxation of the polymer amount between the plates when the separation changes.
This could be achieved by resorting to a living polymer system (but without cycles) where the
monomer units can appear and disappear constantly and everywhere.

An off-lattice simulation of that kind seems straightforward. A lattice brings in another
problem: for a plate to move, the whole layer on one side of the plate must be empty. A solution
might be to consider a �|-shaped plate (in two dimensions) with one defect bond normal to all
other bonds (one kink). The kink diffusion along the plate (which requires at each step that
just one neighbouring lattice site is empty) would result in a global plate motion in the normal
direction.
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